Войти

Квантовый компьютер

Увеличение вычислительной мощности техники – одна из главных задач ученых и инженеров. Квантовый компьютер способен ее решить. Разработками устройства занимаются Google, IBM, Intel и другие компании. Теоретически квантовый ПК будет работать в 100 млн раз быстрее обычного.

Что такое квантовый компьютер

Такое вычислительное устройство работает не с битами, а кубитами. Из-за этого квантовый ПК способен обрабатывать одновременно все возможные состояния объекта. Но на практике суперкомпьютеры выполняют такое же количество логических операций в минуту.

Преимущества

Главное достоинство новой технологии – квантовое превосходство. Это способность вычислительных устройств решать задачи, недоступные мощным суперкомпьютерам. Не все ученые поддерживают идею создания такого ПК. Главный аргумент против – невозможность проверки правильности полученного решения. При вычислениях устройство может совершить ошибку, перепутав 0 и 1, а выявить проблему не удастся.

В настоящий момент главная проблема на пути создания квантового превосходства – стабильность кубитов. Эти элементы требуют осторожного обращения: случайный шум или вибрация приводят к потере данных, которые удалось вычислить компьютеру. Для стабильной работы техники температура окружающей среды должна быть не больше 20 мК.

Как работает кубит

В стандартных компьютерах информация представлена двоичным кодом. Биты для хранения и обработки данных принимают значения 0 или 1. Транзисторы выполняют математические операции, а на экране возникает результат преобразования двоичного кода.

Кубит – единица хранения информации в квантовом компьютере. Кроме 0 и 1, он может находиться в неопределенном пограничном состоянии, называемом суперпозицией. Для получения кубита нужно взять один атом, зафиксировать и стабилизировать его, оградив от посторонних излучений, связать с другим атомом.

Чем больше таких элементов соединено между собой, тем стабильнее работает система. Чтобы превзойти классический суперкомпьютер, нужно связать более 49 кубитов. Сделать это очень сложно: атомы, независимо от используемых материалов, всегда нестабильны.

Квантовые вычисления

Теория гласит, что без взаимодействия с другими частицами электрон не имеет однозначных координат на атомной орбите. Только при измерении неопределенность исчезает, а местоположение частицы становится известным.

Вероятностный характер изменений позволяет использовать квантовые вычисления для поиска в неструктурированных базах данных.

Суперпозиция и запутывание

Работа компьютера основана на двух механических явлениях:

  1. Запутанность. Явление, при котором состояние двух и более объектов взаимозависимо. Например, у 2 фотонов в запутанном состоянии спиральность окажется отрицательной и положительной. Взаимосвязь сохранится, если убрать объекты друг от друга в пространстве.
  2. Когерентная суперпозиция. Одновременное воздействие на частицу альтернативных (взаимоисключающих) состояний.

Декогеренция

Это процесс, при котором состояние квантовой системы становится неконтролируемым. Декогеренция возникает, когда много кубитов зависят друг от друга. Проблема появляется при взаимодействии компьютера с радиацией, космическими лучами или магнитным полем.

Для защиты компьютеров от «скатывания» к обычным вычислительным процессам применяют разные методы. Компания D-Wave Systems охлаждает атомы до нуля, чтобы защитить их от внешних воздействий. Квантовый процессор помещают в защитные оболочки, поэтому готовые устройства очень громоздкие.

Вероятность создания квантового ПК

Кубит не построить из нескольких частиц, а в нужном состоянии могут находиться только атомы. По умолчанию эти множественные частицы неурегулированные. Китайские и канадские ученые пытались использовать для разработки компьютера чипы на фотонах, но исследования не увенчались успехом.

Существующие типы квантовых ПК:

  • в полупроводниковых кремниевых кристаллах;
  • на электронах в полупроводниковых квантовых точках;
  • в микрорезонаторах на одиночных атомах;
  • на линейных оптических элементах;
  • на ионах в одномерном кристалле в ловушке Пауля.

Квантовые вычисления предполагают последовательность операций, которые совершаются с одним или несколькими кубитами, что вызывает изменения всей системы. Задача – выбрать из всех ее состояний правильное, дающее результат вычислений. Может быть сколь угодно много состояний, максимально приближенных к истинному.

Точность этих вычислений почти всегда отличается от единицы.

Для полноценного квантового ПК нужны значительные достижения в физике. Программирование должно отличаться от существующего сейчас. Квантовые вычислительные устройства не смогут решить задачи, которые не под силу обычным, но ускорят решения тех, с которыми справляются.

Последним по времени прорывом стало создание процессора Bristlecone корпорацией Google. Весной 2018 года компания опубликовала заявление про получение 72-кубитного процессора, но его принципы работы не проафишировала. Считается, что для достижения «квантового превосходства», когда ПК начинает превосходить обычный, потребуется 49 кубитов. Google добилась выполнения условия, но вероятность погрешности вычислений (0,6 %) осталась выше требуемого.

Где могут применяться квантовые компьютеры

Современная криптография базируется на том, что невозможно быстро разложить число на 40–50 знаков. У классических компьютеров на это уйдет 1–2 млрд лет. Квантовый ПК сделает эти математические вычисления за 25 секунд. Это значит, что любые алгоритмы шифрования можно будет мгновенно взломать.

Другие сферы применения квантовых вычислительных устройств:

  • моделирование химических реакций;
  • искусственный интеллект;
  • разработка новых лекарств.

Современные квантовые ПК этого не умеют.

Устройства способны выполнять один математический алгоритм с огромной производительностью.
Их приобретают крупные компании, например, для сбора статистики пользователей.

Видео

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!
Понравилась статья?
Расскажите, что вам не понравилось?
Реклама на сайте

Статья обновлена: 28.11.2019